/**
*Submitted for verification at Etherscan.io on 2019-12-03
*/

pragma solidity 0.5.13;

/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
contract Context {
// Empty internal constructor, to prevent people from mistakenly deploying
// an instance of this contract, which should be used via inheritance.
constructor () internal { }
// solhint-disable-previous-line no-empty-blocks

function _msgSender() internal view returns (address payable) {
return msg.sender;
}

function _msgData() internal view returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}

/**
* @dev Interface of the ERC20 standard as defined in the EIP. Does not include
* the optional functions; to access them see {ERC20Detailed}.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);

/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);

/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);

/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);

/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);

/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);

/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}

/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");

return c;
}

/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}

/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*
* _Available since v2.4.0._
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;

return c;
}

/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}

uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");

return c;
}

/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}

/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*
* _Available since v2.4.0._
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold

return c;
}

/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}

/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*
* _Available since v2.4.0._
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}

/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20Mintable}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20 {
using SafeMath for uint256;

mapping (address => uint256) private _balances;

mapping (address => mapping (address => uint256)) private _allowances;

uint256 private _totalSupply;

/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view returns (uint256) {
return _totalSupply;
}

/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view returns (uint256) {
return _balances[account];
}

/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}

/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view returns (uint256) {
return _allowances[owner][spender];
}

/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}

/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20};
*
* Requirements:
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for `sender`'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}

/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}

/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}

/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");

_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}

/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal {
require(account != address(0), "ERC20: mint to the zero address");

_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}

/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal {
require(account != address(0), "ERC20: burn from the zero address");

_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}

/**
* @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
*
* This is internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");

_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}

/**
* @dev Destroys `amount` tokens from `account`.`amount` is then deducted
* from the caller's allowance.
*
* See {_burn} and {_approve}.
*/
function _burnFrom(address account, uint256 amount) internal {
_burn(account, amount);
_approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "ERC20: burn amount exceeds allowance"));
}
}

contract GlobalsAndUtility is ERC20 {
/* XfLobbyEnter (auto-generated event)

uint40 timestamp --> data0 [ 39: 0]
address indexed memberAddr
uint256 indexed entryId
uint96 rawAmount --> data0 [135: 40]
address indexed referrerAddr
*/
event XfLobbyEnter(
uint256 data0,
address indexed memberAddr,
uint256 indexed entryId,
address indexed referrerAddr
);

/* XfLobbyExit (auto-generated event)

uint40 timestamp --> data0 [ 39: 0]
address indexed memberAddr
uint256 indexed entryId
uint72 xfAmount --> data0 [111: 40]
address indexed referrerAddr
*/
event XfLobbyExit(
uint256 data0,
address indexed memberAddr,
uint256 indexed entryId,
address indexed referrerAddr
);

/* DailyDataUpdate (auto-generated event)

uint40 timestamp --> data0 [ 39: 0]
uint16 beginDay --> data0 [ 55: 40]
uint16 endDay --> data0 [ 71: 56]
bool isAutoUpdate --> data0 [ 79: 72]
address indexed updaterAddr
*/
event DailyDataUpdate(
uint256 data0,
address indexed updaterAddr
);

/* Claim (auto-generated event)

uint40 timestamp --> data0 [ 39: 0]
bytes20 indexed btcAddr
uint56 rawSatoshis --> data0 [ 95: 40]
uint56 adjSatoshis --> data0 [151: 96]
address indexed claimToAddr
uint8 claimFlags --> data0 [159:152]
uint72 claimedHearts --> data0 [231:160]
address indexed referrerAddr
address senderAddr --> data1 [159: 0]
*/
event Claim(
uint256 data0,
uint256 data1,
bytes20 indexed btcAddr,
address indexed claimToAddr,
address indexed referrerAddr
);

/* ClaimAssist (auto-generated event)

uint40 timestamp --> data0 [ 39: 0]
bytes20 btcAddr --> data0 [199: 40]
uint56 rawSatoshis --> data0 [255:200]
uint56 adjSatoshis --> data1 [ 55: 0]
address claimToAddr --> data1 [215: 56]
uint8 claimFlags --> data1 [223:216]
uint72 claimedHearts --> data2 [ 71: 0]
address referrerAddr --> data2 [231: 72]
address indexed senderAddr
*/
event ClaimAssist(
uint256 data0,
uint256 data1,
uint256 data2,
address indexed senderAddr
);

/* StakeStart (auto-generated event)

uint40 timestamp --> data0 [ 39: 0]
address indexed stakerAddr
uint40 indexed stakeId
uint72 stakedHearts --> data0 [111: 40]
uint72 stakeShares --> data0 [183:112]
uint16 stakedDays --> data0 [199:184]
bool isAutoStake --> data0 [207:200]
*/
event StakeStart(
uint256 data0,
address indexed stakerAddr,
uint40 indexed stakeId
);

/* StakeGoodAccounting(auto-generated event)

uint40 timestamp --> data0 [ 39: 0]
address indexed stakerAddr
uint40 indexed stakeId
uint72 stakedHearts --> data0 [111: 40]
uint72 stakeShares --> data0 [183:112]
uint72 payout --> data0 [255:184]
uint72 penalty --> data1 [ 71: 0]
address indexed senderAddr
*/
event StakeGoodAccounting(
uint256 data0,
uint256 data1,
address indexed stakerAddr,
uint40 indexed stakeId,
address indexed senderAddr
);

/* StakeEnd (auto-generated event)

uint40 timestamp --> data0 [ 39: 0]
address indexed stakerAddr
uint40 indexed stakeId
uint72 stakedHearts --> data0 [111: 40]
uint72 stakeShares --> data0 [183:112]
uint72 payout --> data0 [255:184]
uint72 penalty --> data1 [ 71: 0]
uint16 servedDays --> data1 [ 87: 72]
bool prevUnlocked --> data1 [ 95: 88]
*/
event StakeEnd(
uint256 data0,
uint256 data1,
address indexed stakerAddr,
uint40 indexed stakeId
);

/* ShareRateChange (auto-generated event)

uint40 timestamp --> data0 [ 39: 0]
uint40 shareRate --> data0 [ 79: 40]
uint40 indexed stakeId
*/
event ShareRateChange(
uint256 data0,
uint40 indexed stakeId
);

/* Origin address */
address internal constant ORIGIN_ADDR = 0x9A6a414D6F3497c05E3b1De90520765fA1E07c03;

/* Flush address */
address payable internal constant FLUSH_ADDR = 0xDEC9f2793e3c17cd26eeFb21C4762fA5128E0399;

/* ERC20 constants */
string public constant name = "HEX";
string public constant symbol = "HEX";
uint8 public constant decimals = 8;

/* Hearts per Satoshi = 10,000 * 1e8 / 1e8 = 1e4 */
uint256 private constant HEARTS_PER_HEX = 10 ** uint256(decimals); // 1e8
uint256 private constant HEX_PER_BTC = 1e4;
uint256 private constant SATOSHIS_PER_BTC = 1e8;
uint256 internal constant HEARTS_PER_SATOSHI = HEARTS_PER_HEX / SATOSHIS_PER_BTC * HEX_PER_BTC;

/* Time of contract launch (2019-12-03T00:00:00Z) */
uint256 internal constant LAUNCH_TIME = 1575331200;

/* Size of a Hearts or Shares uint */
uint256 internal constant HEART_UINT_SIZE = 72;

/* Size of a transform lobby entry index uint */
uint256 internal constant XF_LOBBY_ENTRY_INDEX_SIZE = 40;
uint256 internal constant XF_LOBBY_ENTRY_INDEX_MASK = (1 << XF_LOBBY_ENTRY_INDEX_SIZE) - 1;

/* Seed for WAAS Lobby */
uint256 internal constant WAAS_LOBBY_SEED_HEX = 1e9;
uint256 internal constant WAAS_LOBBY_SEED_HEARTS = WAAS_LOBBY_SEED_HEX * HEARTS_PER_HEX;

/* Start of claim phase */
uint256 internal constant PRE_CLAIM_DAYS = 1;
uint256 internal constant CLAIM_PHASE_START_DAY = PRE_CLAIM_DAYS;

/* Length of claim phase */
uint256 private constant CLAIM_PHASE_WEEKS = 50;
uint256 internal constant CLAIM_PHASE_DAYS = CLAIM_PHASE_WEEKS * 7;

/* End of claim phase */
uint256 internal constant CLAIM_PHASE_END_DAY = CLAIM_PHASE_START_DAY + CLAIM_PHASE_DAYS;

/* Number of words to hold 1 bit for each transform lobby day */
uint256 internal constant XF_LOBBY_DAY_WORDS = (CLAIM_PHASE_END_DAY + 255) >> 8;

/* BigPayDay */
uint256 internal constant BIG_PAY_DAY = CLAIM_PHASE_END_DAY + 1;

/* Root hash of the UTXO Merkle tree */
bytes32 internal constant MERKLE_TREE_ROOT = 0x4e831acb4223b66de3b3d2e54a2edeefb0de3d7916e2886a4b134d9764d41bec;

/* Size of a Satoshi claim uint in a Merkle leaf */
uint256 internal constant MERKLE_LEAF_SATOSHI_SIZE = 45;

/* Zero-fill between BTC address and Satoshis in a Merkle leaf */
uint256 internal constant MERKLE_LEAF_FILL_SIZE = 256 - 160 - MERKLE_LEAF_SATOSHI_SIZE;
uint256 internal constant MERKLE_LEAF_FILL_BASE = (1 << MERKLE_LEAF_FILL_SIZE) - 1;
uint256 internal constant MERKLE_LEAF_FILL_MASK = MERKLE_LEAF_FILL_BASE << MERKLE_LEAF_SATOSHI_SIZE;

/* Size of a Satoshi total uint */
uint256 internal constant SATOSHI_UINT_SIZE = 51;
uint256 internal constant SATOSHI_UINT_MASK = (1 << SATOSHI_UINT_SIZE) - 1;

/* Total Satoshis from all BTC addresses in UTXO snapshot */
uint256 internal constant FULL_SATOSHIS_TOTAL = 1807766732160668;

/* Total Satoshis from supported BTC addresses in UTXO snapshot after applying Silly Whale */
uint256 internal constant CLAIMABLE_SATOSHIS_TOTAL = 910087996911001;

/* Number of claimable BTC addresses in UTXO snapshot */
uint256 internal constant CLAIMABLE_BTC_ADDR_COUNT = 27997742;

/* Largest BTC address Satoshis balance in UTXO snapshot (sanity check) */
uint256 internal constant MAX_BTC_ADDR_BALANCE_SATOSHIS = 25550214098481;

/* Percentage of total claimed Hearts that will be auto-staked from a claim */
uint256 internal constant AUTO_STAKE_CLAIM_PERCENT = 90;

/* Stake timing parameters */
uint256 internal constant MIN_STAKE_DAYS = 1;
uint256 internal constant MIN_AUTO_STAKE_DAYS = 350;

uint256 internal constant MAX_STAKE_DAYS = 5555; // Approx 15 years

uint256 internal constant EARLY_PENALTY_MIN_DAYS = 90;

uint256 private constant LATE_PENALTY_GRACE_WEEKS = 2;
uint256 internal constant LATE_PENALTY_GRACE_DAYS = LATE_PENALTY_GRACE_WEEKS * 7;

uint256 private constant LATE_PENALTY_SCALE_WEEKS = 100;
uint256 internal constant LATE_PENALTY_SCALE_DAYS = LATE_PENALTY_SCALE_WEEKS * 7;

/* Stake shares Longer Pays Better bonus constants used by _stakeStartBonusHearts() */
uint256 private constant LPB_BONUS_PERCENT = 20;
uint256 private constant LPB_BONUS_MAX_PERCENT = 200;
uint256 internal constant LPB = 364 * 100 / LPB_BONUS_PERCENT;
uint256 internal constant LPB_MAX_DAYS = LPB * LPB_BONUS_MAX_PERCENT / 100;

/* Stake shares Bigger Pays Better bonus constants used by _stakeStartBonusHearts() */
uint256 private constant BPB_BONUS_PERCENT = 10;
uint256 private constant BPB_MAX_HEX = 150 * 1e6;
uint256 internal constant BPB_MAX_HEARTS = BPB_MAX_HEX * HEARTS_PER_HEX;
uint256 internal constant BPB = BPB_MAX_HEARTS * 100 / BPB_BONUS_PERCENT;

/* Share rate is scaled to increase precision */
uint256 internal constant SHARE_RATE_SCALE = 1e5;

/* Share rate max (after scaling) */
uint256 internal constant SHARE_RATE_UINT_SIZE = 40;
uint256 internal constant SHARE_RATE_MAX = (1 << SHARE_RATE_UINT_SIZE) - 1;

/* Constants for preparing the claim message text */
uint8 internal constant ETH_ADDRESS_BYTE_LEN = 20;
uint8 internal constant ETH_ADDRESS_HEX_LEN = ETH_ADDRESS_BYTE_LEN * 2;

uint8 internal constant CLAIM_PARAM_HASH_BYTE_LEN = 12;
uint8 internal constant CLAIM_PARAM_HASH_HEX_LEN = CLAIM_PARAM_HASH_BYTE_LEN * 2;

uint8 internal constant BITCOIN_SIG_PREFIX_LEN = 24;
bytes24 internal constant BITCOIN_SIG_PREFIX_STR = "Bitcoin Signed Message:\n";

bytes internal constant STD_CLAIM_PREFIX_STR = "Claim_HEX_to_0x";
bytes internal constant OLD_CLAIM_PREFIX_STR = "Claim_BitcoinHEX_to_0x";

bytes16 internal constant HEX_DIGITS = "0123456789abcdef";

/* Claim flags passed to btcAddressClaim() */
uint8 internal constant CLAIM_FLAG_MSG_PREFIX_OLD = 1 << 0;
uint8 internal constant CLAIM_FLAG_BTC_ADDR_COMPRESSED = 1 << 1;
uint8 internal constant CLAIM_FLAG_BTC_ADDR_P2WPKH_IN_P2SH = 1 << 2;
uint8 internal constant CLAIM_FLAG_BTC_ADDR_BECH32 = 1 << 3;
uint8 internal constant CLAIM_FLAG_ETH_ADDR_LOWERCASE = 1 << 4;

/* Globals expanded for memory (except _latestStakeId) and compact for storage */
struct GlobalsCache {
// 1
uint256 _lockedHeartsTotal;
uint256 _nextStakeSharesTotal;
uint256 _shareRate;
uint256 _stakePenaltyTotal;
// 2
uint256 _dailyDataCount;
uint256 _stakeSharesTotal;
uint40 _latestStakeId;
uint256 _unclaimedSatoshisTotal;
uint256 _claimedSatoshisTotal;
uint256 _claimedBtcAddrCount;
//
uint256 _currentDay;
}

struct GlobalsStore {
// 1
uint72 lockedHeartsTotal;
uint72 nextStakeSharesTotal;
uint40 shareRate;
uint72 stakePenaltyTotal;
// 2
uint16 dailyDataCount;
uint72 stakeSharesTotal;
uint40 latestStakeId;
uint128 claimStats;
}

GlobalsStore public globals;

/* Claimed BTC addresses */
mapping(bytes20 => bool) public btcAddressClaims;

/* Daily data */
struct DailyDataStore {
uint72 dayPayoutTotal;
uint72 dayStakeSharesTotal;
uint56 dayUnclaimedSatoshisTotal;
}

mapping(uint256 => DailyDataStore) public dailyData;

/* Stake expanded for memory (except _stakeId) and compact for storage */
struct StakeCache {
uint40 _stakeId;
uint256 _stakedHearts;
uint256 _stakeShares;
uint256 _lockedDay;
uint256 _stakedDays;
uint256 _unlockedDay;
bool _isAutoStake;
}

struct StakeStore {
uint40 stakeId;
uint72 stakedHearts;
uint72 stakeShares;
uint16 lockedDay;
uint16 stakedDays;
uint16 unlockedDay;
bool isAutoStake;
}

mapping(address => StakeStore[]) public stakeLists;

/* Temporary state for calculating daily rounds */
struct DailyRoundState {
uint256 _allocSupplyCached;
uint256 _mintOriginBatch;
uint256 _payoutTotal;
}

struct XfLobbyEntryStore {
uint96 rawAmount;
address referrerAddr;
}

struct XfLobbyQueueStore {
uint40 headIndex;
uint40 tailIndex;
mapping(uint256 => XfLobbyEntryStore) entries;
}

mapping(uint256 => uint256) public xfLobby;
mapping(uint256 => mapping(address => XfLobbyQueueStore)) public xfLobbyMembers;

/**
* @dev PUBLIC FACING: Optionally update daily data for a smaller
* range to reduce gas cost for a subsequent operation
* @param beforeDay Only update days before this day number (optional; 0 for current day)
*/
function dailyDataUpdate(uint256 beforeDay)
external
{
GlobalsCache memory g;
GlobalsCache memory gSnapshot;
_globalsLoad(g, gSnapshot);

/* Skip pre-claim period */
require(g._currentDay > CLAIM_PHASE_START_DAY, "HEX: Too early");

if (beforeDay != 0) {
require(beforeDay <= g._currentDay, "HEX: beforeDay cannot be in the future");

_dailyDataUpdate(g, beforeDay, false);
} else {
/* Default to updating before current day */
_dailyDataUpdate(g, g._currentDay, false);
}

_globalsSync(g, gSnapshot);
}

/**
* @dev PUBLIC FACING: External helper to return multiple values of daily data with
* a single call. Ugly implementation due to limitations of the standard ABI encoder.
* @param beginDay First day of data range
* @param endDay Last day (non-inclusive) of data range
* @return Fixed array of packed values
*/
function dailyDataRange(uint256 beginDay, uint256 endDay)
external
view
returns (uint256[] memory list)
{
require(beginDay < endDay && endDay <= globals.dailyDataCount, "HEX: range invalid");

list = new uint256[](endDay - beginDay);

uint256 src = beginDay;
uint256 dst = 0;
uint256 v;
do {
v = uint256(dailyData[src].dayUnclaimedSatoshisTotal) << (HEART_UINT_SIZE * 2);
v |= uint256(dailyData[src].dayStakeSharesTotal) << HEART_UINT_SIZE;
v |= uint256(dailyData[src].dayPayoutTotal);

list[dst++] = v;
} while (++src < endDay);

return list;
}

/**
* @dev PUBLIC FACING: External helper to return most global info with a single call.
* Ugly implementation due to limitations of the standard ABI encoder.
* @return Fixed array of values
*/
function globalInfo()
external
view
returns (uint256[13] memory)
{
uint256 _claimedBtcAddrCount;
uint256 _claimedSatoshisTotal;
uint256 _unclaimedSatoshisTotal;

(_claimedBtcAddrCount, _claimedSatoshisTotal, _unclaimedSatoshisTotal) = _claimStatsDecode(
globals.claimStats
);

return [
// 1
globals.lockedHeartsTotal,
globals.nextStakeSharesTotal,
globals.shareRate,
globals.stakePenaltyTotal,
// 2
globals.dailyDataCount,
globals.stakeSharesTotal,
globals.latestStakeId,
_unclaimedSatoshisTotal,
_claimedSatoshisTotal,
_claimedBtcAddrCount,
//
block.timestamp,
totalSupply(),
xfLobby[_currentDay()]
];
}

/**
* @dev PUBLIC FACING: ERC20 totalSupply() is the circulating supply and does not include any
* staked Hearts. allocatedSupply() includes both.
* @return Allocated Supply in Hearts
*/
function allocatedSupply()
external
view
returns (uint256)
{
return totalSupply() + globals.lockedHeartsTotal;
}

/**
* @dev PUBLIC FACING: External helper for the current day number since launch time
* @return Current day number (zero-based)
*/
function currentDay()
external
view
returns (uint256)
{
return _currentDay();
}

function _currentDay()
internal
view
returns (uint256)
{
return (block.timestamp - LAUNCH_TIME) / 1 days;
}

function _dailyDataUpdateAuto(GlobalsCache memory g)
internal
{
_dailyDataUpdate(g, g._currentDay, true);
}

function _globalsLoad(GlobalsCache memory g, GlobalsCache memory gSnapshot)
internal
view
{
// 1
g._lockedHeartsTotal = globals.lockedHeartsTotal;
g._nextStakeSharesTotal = globals.nextStakeSharesTotal;
g._shareRate = globals.shareRate;
g._stakePenaltyTotal = globals.stakePenaltyTotal;
// 2
g._dailyDataCount = globals.dailyDataCount;
g._stakeSharesTotal = globals.stakeSharesTotal;
g._latestStakeId = globals.latestStakeId;
(g._claimedBtcAddrCount, g._claimedSatoshisTotal, g._unclaimedSatoshisTotal) = _claimStatsDecode(
globals.claimStats
);
//
g._currentDay = _currentDay();

_globalsCacheSnapshot(g, gSnapshot);
}

function _globalsCacheSnapshot(GlobalsCache memory g, GlobalsCache memory gSnapshot)
internal
pure
{
// 1
gSnapshot._lockedHeartsTotal = g._lockedHeartsTotal;
gSnapshot._nextStakeSharesTotal = g._nextStakeSharesTotal;
gSnapshot._shareRate = g._shareRate;
gSnapshot._stakePenaltyTotal = g._stakePenaltyTotal;
// 2
gSnapshot._dailyDataCount = g._dailyDataCount;
gSnapshot._stakeSharesTotal = g._stakeSharesTotal;
gSnapshot._latestStakeId = g._latestStakeId;
gSnapshot._unclaimedSatoshisTotal = g._unclaimedSatoshisTotal;
gSnapshot._claimedSatoshisTotal = g._claimedSatoshisTotal;
gSnapshot._claimedBtcAddrCount = g._claimedBtcAddrCount;
}

function _globalsSync(GlobalsCache memory g, GlobalsCache memory gSnapshot)
internal
{
if (g._lockedHeartsTotal != gSnapshot._lockedHeartsTotal
|| g._nextStakeSharesTotal != gSnapshot._nextStakeSharesTotal
|| g._shareRate != gSnapshot._shareRate
|| g._stakePenaltyTotal != gSnapshot._stakePenaltyTotal) {
// 1
globals.lockedHeartsTotal = uint72(g._lockedHeartsTotal);
globals.nextStakeSharesTotal = uint72(g._nextStakeSharesTotal);
globals.shareRate = uint40(g._shareRate);
globals.stakePenaltyTotal = uint72(g._stakePenaltyTotal);
}
if (g._dailyDataCount != gSnapshot._dailyDataCount
|| g._stakeSharesTotal != gSnapshot._stakeSharesTotal
|| g._latestStakeId != gSnapshot._latestStakeId
|| g._unclaimedSatoshisTotal != gSnapshot._unclaimedSatoshisTotal
|| g._claimedSatoshisTotal != gSnapshot._claimedSatoshisTotal
|| g._claimedBtcAddrCount != gSnapshot._claimedBtcAddrCount) {
// 2
globals.dailyDataCount = uint16(g._dailyDataCount);
globals.stakeSharesTotal = uint72(g._stakeSharesTotal);
globals.latestStakeId = g._latestStakeId;
globals.claimStats = _claimStatsEncode(
g._claimedBtcAddrCount,
g._claimedSatoshisTotal,
g._unclaimedSatoshisTotal
);
}
}

function _stakeLoad(StakeStore storage stRef, uint40 stakeIdParam, StakeCache memory st)
internal
view
{
/* Ensure caller's stakeIndex is still current */
require(stakeIdParam == stRef.stakeId, "HEX: stakeIdParam not in stake");

st._stakeId = stRef.stakeId;
st._stakedHearts = stRef.stakedHearts;
st._stakeShares = stRef.stakeShares;
st._lockedDay = stRef.lockedDay;
st._stakedDays = stRef.stakedDays;
st._unlockedDay = stRef.unlockedDay;
st._isAutoStake = stRef.isAutoStake;
}

function _stakeUpdate(StakeStore storage stRef, StakeCache memory st)
internal
{
stRef.stakeId = st._stakeId;
stRef.stakedHearts = uint72(st._stakedHearts);
stRef.stakeShares = uint72(st._stakeShares);
stRef.lockedDay = uint16(st._lockedDay);
stRef.stakedDays = uint16(st._stakedDays);
stRef.unlockedDay = uint16(st._unlockedDay);
stRef.isAutoStake = st._isAutoStake;
}

function _stakeAdd(
StakeStore[] storage stakeListRef,
uint40 newStakeId,
uint256 newStakedHearts,
uint256 newStakeShares,
uint256 newLockedDay,
uint256 newStakedDays,
bool newAutoStake
)
internal
{
stakeListRef.push(
StakeStore(
newStakeId,
uint72(newStakedHearts),
uint72(newStakeShares),
uint16(newLockedDay),
uint16(newStakedDays),
uint16(0), // unlockedDay
newAutoStake
)
);
}

/**
* @dev Efficiently delete from an unordered array by moving the last element
* to the "hole" and reducing the array length. Can change the order of the list
* and invalidate previously held indexes.
* @notice stakeListRef length and stakeIndex are already ensured valid in stakeEnd()
* @param stakeListRef Reference to stakeLists[stakerAddr] array in storage
* @param stakeIndex Index of the element to delete
*/
function _stakeRemove(StakeStore[] storage stakeListRef, uint256 stakeIndex)
internal
{
uint256 lastIndex = stakeListRef.length - 1;

/* Skip the copy if element to be removed is already the last element */
if (stakeIndex != lastIndex) {
/* Copy last element to the requested element's "hole" */
stakeListRef[stakeIndex] = stakeListRef[lastIndex];
}

/*
Reduce the array length now that the array is contiguous.
Surprisingly, 'pop()' uses less gas than 'stakeListRef.length = lastIndex'
*/
stakeListRef.pop();
}

function _claimStatsEncode(
uint256 _claimedBtcAddrCount,
uint256 _claimedSatoshisTotal,
uint256 _unclaimedSatoshisTotal
)
internal
pure
returns (uint128)
{
uint256 v = _claimedBtcAddrCount << (SATOSHI_UINT_SIZE * 2);
v |= _claimedSatoshisTotal << SATOSHI_UINT_SIZE;
v |= _unclaimedSatoshisTotal;

return uint128(v);
}

function _claimStatsDecode(uint128 v)
internal
pure
returns (uint256 _claimedBtcAddrCount, uint256 _claimedSatoshisTotal, uint256 _unclaimedSatoshisTotal)
{
_claimedBtcAddrCount = v >> (SATOSHI_UINT_SIZE * 2);
_claimedSatoshisTotal = (v >> SATOSHI_UINT_SIZE) & SATOSHI_UINT_MASK;
_unclaimedSatoshisTotal = v & SATOSHI_UINT_MASK;

return (_claimedBtcAddrCount, _claimedSatoshisTotal, _unclaimedSatoshisTotal);
}

/**
* @dev Estimate the stake payout for an incomplete day
* @param g Cache of stored globals
* @param stakeSharesParam Param from stake to calculate bonuses for
* @param day Day to calculate bonuses for
* @return Payout in Hearts
*/
function _estimatePayoutRewardsDay(GlobalsCache memory g, uint256 stakeSharesParam, uint256 day)
internal
view
returns (uint256 payout)
{
/* Prevent updating state for this estimation */
GlobalsCache memory gTmp;
_globalsCacheSnapshot(g, gTmp);

DailyRoundState memory rs;
rs._allocSupplyCached = totalSupply() + g._lockedHeartsTotal;

_dailyRoundCalc(gTmp, rs, day);

/* Stake is no longer locked so it must be added to total as if it were */
gTmp._stakeSharesTotal += stakeSharesParam;

payout = rs._payoutTotal * stakeSharesParam / gTmp._stakeSharesTotal;

if (day == BIG_PAY_DAY) {
uint256 bigPaySlice = gTmp._unclaimedSatoshisTotal * HEARTS_PER_SATOSHI * stakeSharesParam
/ gTmp._stakeSharesTotal;
payout += bigPaySlice + _calcAdoptionBonus(gTmp, bigPaySlice);
}

return payout;
}

function _calcAdoptionBonus(GlobalsCache memory g, uint256 payout)
internal
pure
returns (uint256)
{
/*
VIRAL REWARDS: Add adoption percentage bonus to payout

viral = payout * (claimedBtcAddrCount / CLAIMABLE_BTC_ADDR_COUNT)
*/
uint256 viral = payout * g._claimedBtcAddrCount / CLAIMABLE_BTC_ADDR_COUNT;

/*
CRIT MASS REWARDS: Add adoption percentage bonus to payout

crit = payout * (claimedSatoshisTotal / CLAIMABLE_SATOSHIS_TOTAL)
*/
uint256 crit = payout * g._claimedSatoshisTotal / CLAIMABLE_SATOSHIS_TOTAL;

return viral + crit;
}

function _dailyRoundCalc(GlobalsCache memory g, DailyRoundState memory rs, uint256 day)
private
pure
{
/*
Calculate payout round

Inflation of 3.69% inflation per 364 days (approx 1 year)
dailyInterestRate = exp(log(1 + 3.69%) / 364) - 1
= exp(log(1 + 0.0369) / 364) - 1
= exp(log(1.0369) / 364) - 1
= 0.000099553011616349 (approx)

payout = allocSupply * dailyInterestRate
= allocSupply / (1 / dailyInterestRate)
= allocSupply / (1 / 0.000099553011616349)
= allocSupply / 10044.899534066692 (approx)
= allocSupply * 10000 / 100448995 (* 10000/10000 for int precision)
*/
rs._payoutTotal = rs._allocSupplyCached * 10000 / 100448995;

if (day < CLAIM_PHASE_END_DAY) {
uint256 bigPaySlice = g._unclaimedSatoshisTotal * HEARTS_PER_SATOSHI / CLAIM_PHASE_DAYS;

uint256 originBonus = bigPaySlice + _calcAdoptionBonus(g, rs._payoutTotal + bigPaySlice);
rs._mintOriginBatch += originBonus;
rs._allocSupplyCached += originBonus;

rs._payoutTotal += _calcAdoptionBonus(g, rs._payoutTotal);
}

if (g._stakePenaltyTotal != 0) {
rs._payoutTotal += g._stakePenaltyTotal;
g._stakePenaltyTotal = 0;
}
}

function _dailyRoundCalcAndStore(GlobalsCache memory g, DailyRoundState memory rs, uint256 day)
private
{
_dailyRoundCalc(g, rs, day);

dailyData[day].dayPayoutTotal = uint72(rs._payoutTotal);
dailyData[day].dayStakeSharesTotal = uint72(g._stakeSharesTotal);
dailyData[day].dayUnclaimedSatoshisTotal = uint56(g._unclaimedSatoshisTotal);
}

function _dailyDataUpdate(GlobalsCache memory g, uint256 beforeDay, bool isAutoUpdate)
private
{
if (g._dailyDataCount >= beforeDay) {
/* Already up-to-date */
return;
}

DailyRoundState memory rs;
rs._allocSupplyCached = totalSupply() + g._lockedHeartsTotal;

uint256 day = g._dailyDataCount;

_dailyRoundCalcAndStore(g, rs, day);

/* Stakes started during this day are added to the total the next day */
if (g._nextStakeSharesTotal != 0) {
g._stakeSharesTotal += g._nextStakeSharesTotal;
g._nextStakeSharesTotal = 0;
}

while (++day < beforeDay) {
_dailyRoundCalcAndStore(g, rs, day);
}

_emitDailyDataUpdate(g._dailyDataCount, day, isAutoUpdate);
g._dailyDataCount = day;

if (rs._mintOriginBatch != 0) {
_mint(ORIGIN_ADDR, rs._mintOriginBatch);
}
}

function _emitDailyDataUpdate(uint256 beginDay, uint256 endDay, bool isAutoUpdate)
private
{
emit DailyDataUpdate( // (auto-generated event)
uint256(uint40(block.timestamp))
| (uint256(uint16(beginDay)) << 40)
| (uint256(uint16(endDay)) << 56)
| (isAutoUpdate ? (1 << 72) : 0),
msg.sender
);
}
}

contract StakeableToken is GlobalsAndUtility {
/**
* @dev PUBLIC FACING: Open a stake.
* @param newStakedHearts Number of Hearts to stake
* @param newStakedDays Number of days to stake
*/
function stakeStart(uint256 newStakedHearts, uint256 newStakedDays)
external
{
GlobalsCache memory g;
GlobalsCache memory gSnapshot;
_globalsLoad(g, gSnapshot);

/* Enforce the minimum stake time */
require(newStakedDays >= MIN_STAKE_DAYS, "HEX: newStakedDays lower than minimum");

/* Check if log data needs to be updated */
_dailyDataUpdateAuto(g);

_stakeStart(g, newStakedHearts, newStakedDays, false);

/* Remove staked Hearts from balance of staker */
_burn(msg.sender, newStakedHearts);

_globalsSync(g, gSnapshot);
}

/**
* @dev PUBLIC FACING: Unlocks a completed stake, distributing the proceeds of any penalty
* immediately. The staker must still call stakeEnd() to retrieve their stake return (if any).
* @param stakerAddr Address of staker
* @param stakeIndex Index of stake within stake list
* @param stakeIdParam The stake's id
*/
function stakeGoodAccounting(address stakerAddr, uint256 stakeIndex, uint40 stakeIdParam)
external
{
GlobalsCache memory g;
GlobalsCache memory gSnapshot;
_globalsLoad(g, gSnapshot);

/* require() is more informative than the default assert() */
require(stakeLists[stakerAddr].length != 0, "HEX: Empty stake list");
require(stakeIndex < stakeLists[stakerAddr].length, "HEX: stakeIndex invalid");

StakeStore storage stRef = stakeLists[stakerAddr][stakeIndex];

/* Get stake copy */
StakeCache memory st;
_stakeLoad(stRef, stakeIdParam, st);

/* Stake must have served full term */
require(g._currentDay >= st._lockedDay + st._stakedDays, "HEX: Stake not fully served");

/* Stake must still be locked */
require(st._unlockedDay == 0, "HEX: Stake already unlocked");

/* Check if log data needs to be updated */
_dailyDataUpdateAuto(g);

/* Unlock the completed stake */
_stakeUnlock(g, st);

/* stakeReturn value is unused here */
(, uint256 payout, uint256 penalty, uint256 cappedPenalty) = _stakePerformance(
g,
st,
st._stakedDays
);

_emitStakeGoodAccounting(
stakerAddr,
stakeIdParam,
st._stakedHearts,
st._stakeShares,
payout,
penalty
);

if (cappedPenalty != 0) {
_splitPenaltyProceeds(g, cappedPenalty);
}

/* st._unlockedDay has changed */
_stakeUpdate(stRef, st);

_globalsSync(g, gSnapshot);
}

/**
* @dev PUBLIC FACING: Closes a stake. The order of the stake list can change so
* a stake id is used to reject stale indexes.
* @param stakeIndex Index of stake within stake list
* @param stakeIdParam The stake's id
*/
function stakeEnd(uint256 stakeIndex, uint40 stakeIdParam)
external
{
GlobalsCache memory g;
GlobalsCache memory gSnapshot;
_globalsLoad(g, gSnapshot);

StakeStore[] storage stakeListRef = stakeLists[msg.sender];

/* require() is more informative than the default assert() */
require(stakeListRef.length != 0, "HEX: Empty stake list");
require(stakeIndex < stakeListRef.length, "HEX: stakeIndex invalid");

/* Get stake copy */
StakeCache memory st;
_stakeLoad(stakeListRef[stakeIndex], stakeIdParam, st);

/* Check if log data needs to be updated */
_dailyDataUpdateAuto(g);

uint256 servedDays = 0;

bool prevUnlocked = (st._unlockedDay != 0);
uint256 stakeReturn;
uint256 payout = 0;
uint256 penalty = 0;
uint256 cappedPenalty = 0;

if (g._currentDay >= st._lockedDay) {
if (prevUnlocked) {
/* Previously unlocked in stakeGoodAccounting(), so must have served full term */
servedDays = st._stakedDays;
} else {
_stakeUnlock(g, st);

servedDays = g._currentDay - st._lockedDay;
if (servedDays > st._stakedDays) {
servedDays = st._stakedDays;
} else {
/* Deny early-unstake before an auto-stake minimum has been served */
if (servedDays < MIN_AUTO_STAKE_DAYS) {
require(!st._isAutoStake, "HEX: Auto-stake still locked");
}
}
}

(stakeReturn, payout, penalty, cappedPenalty) = _stakePerformance(g, st, servedDays);
} else {
/* Deny early-unstake before an auto-stake minimum has been served */
require(!st._isAutoStake, "HEX: Auto-stake still locked");

/* Stake hasn't been added to the total yet, so no penalties or rewards apply */
g._nextStakeSharesTotal -= st._stakeShares;

stakeReturn = st._stakedHearts;
}

_emitStakeEnd(
stakeIdParam,
st._stakedHearts,
st._stakeShares,
payout,
penalty,
servedDays,
prevUnlocked
);

if (cappedPenalty != 0 && !prevUnlocked) {
/* Split penalty proceeds only if not previously unlocked by stakeGoodAccounting() */
_splitPenaltyProceeds(g, cappedPenalty);
}

/* Pay the stake return, if any, to the staker */
if (stakeReturn != 0) {
_mint(msg.sender, stakeReturn);

/* Update the share rate if necessary */
_shareRateUpdate(g, st, stakeReturn);
}
g._lockedHeartsTotal -= st._stakedHearts;

_stakeRemove(stakeListRef, stakeIndex);

_globalsSync(g, gSnapshot);
}

/**
* @dev PUBLIC FACING: Return the current stake count for a staker address
* @param stakerAddr Address of staker
*/
function stakeCount(address stakerAddr)
external
view
returns (uint256)
{
return stakeLists[stakerAddr].length;
}

/**
* @dev Open a stake.
* @param g Cache of stored globals
* @param newStakedHearts Number of Hearts to stake
* @param newStakedDays Number of days to stake
* @param newAutoStake Stake is automatic directly from a new claim
*/
function _stakeStart(
GlobalsCache memory g,
uint256 newStakedHearts,
uint256 newStakedDays,
bool newAutoStake
)
internal
{
/* Enforce the maximum stake time */
require(newStakedDays <= MAX_STAKE_DAYS, "HEX: newStakedDays higher than maximum");

uint256 bonusHearts = _stakeStartBonusHearts(newStakedHearts, newStakedDays);
uint256 newStakeShares = (newStakedHearts + bonusHearts) * SHARE_RATE_SCALE / g._shareRate;

/* Ensure newStakedHearts is enough for at least one stake share */
require(newStakeShares != 0, "HEX: newStakedHearts must be at least minimum shareRate");

/*
The stakeStart timestamp will always be part-way through the current
day, so it needs to be rounded-up to the next day to ensure all
stakes align with the same fixed calendar days. The current day is
already rounded-down, so rounded-up is current day + 1.
*/
uint256 newLockedDay = g._currentDay < CLAIM_PHASE_START_DAY
? CLAIM_PHASE_START_DAY + 1
: g._currentDay + 1;

/* Create Stake */
uint40 newStakeId = ++g._latestStakeId;
_stakeAdd(
stakeLists[msg.sender],
newStakeId,
newStakedHearts,
newStakeShares,
newLockedDay,
newStakedDays,
newAutoStake
);

_emitStakeStart(newStakeId, newStakedHearts, newStakeShares, newStakedDays, newAutoStake);

/* Stake is added to total in the next round, not the current round */
g._nextStakeSharesTotal += newStakeShares;

/* Track total staked Hearts for inflation calculations */
g._lockedHeartsTotal += newStakedHearts;
}

/**
* @dev Calculates total stake payout including rewards for a multi-day range
* @param g Cache of stored globals
* @param stakeSharesParam Param from stake to calculate bonuses for
* @param beginDay First day to calculate bonuses for
* @param endDay Last day (non-inclusive) of range to calculate bonuses for
* @return Payout in Hearts
*/
function _calcPayoutRewards(
GlobalsCache memory g,
uint256 stakeSharesParam,
uint256 beginDay,
uint256 endDay
)
private
view
returns (uint256 payout)
{
for (uint256 day = beginDay; day < endDay; day++) {
payout += dailyData[day].dayPayoutTotal * stakeSharesParam
/ dailyData[day].dayStakeSharesTotal;
}

/* Less expensive to re-read storage than to have the condition inside the loop */
if (beginDay <= BIG_PAY_DAY && endDay > BIG_PAY_DAY) {
uint256 bigPaySlice = g._unclaimedSatoshisTotal * HEARTS_PER_SATOSHI * stakeSharesParam
/ dailyData[BIG_PAY_DAY].dayStakeSharesTotal;

payout += bigPaySlice + _calcAdoptionBonus(g, bigPaySlice);
}
return payout;
}

/**
* @dev Calculate bonus Hearts for a new stake, if any
* @param newStakedHearts Number of Hearts to stake
* @param newStakedDays Number of days to stake
*/
function _stakeStartBonusHearts(uint256 newStakedHearts, uint256 newStakedDays)
private
pure
returns (uint256 bonusHearts)
{
/*
LONGER PAYS BETTER:

If longer than 1 day stake is committed to, each extra day
gives bonus shares of approximately 0.0548%, which is approximately 20%
extra per year of increased stake length committed to, but capped to a
maximum of 200% extra.

extraDays = stakedDays - 1

longerBonus% = (extraDays / 364) * 20%
= (extraDays / 364) / 5
= extraDays / 1820
= extraDays / LPB

extraDays = longerBonus% * 1820
extraDaysMax = longerBonusMax% * 1820
= 200% * 1820
= 3640
= LPB_MAX_DAYS

BIGGER PAYS BETTER:

Bonus percentage scaled 0% to 10% for the first 150M HEX of stake.

biggerBonus% = (cappedHearts / BPB_MAX_HEARTS) * 10%
= (cappedHearts / BPB_MAX_HEARTS) / 10
= cappedHearts / (BPB_MAX_HEARTS * 10)
= cappedHearts / BPB

COMBINED:

combinedBonus% = longerBonus% + biggerBonus%

cappedExtraDays cappedHearts
= --------------- + ------------
LPB BPB

cappedExtraDays * BPB cappedHearts * LPB
= --------------------- + ------------------
LPB * BPB LPB * BPB

cappedExtraDays * BPB + cappedHearts * LPB
= --------------------------------------------
LPB * BPB

bonusHearts = hearts * combinedBonus%
= hearts * (cappedExtraDays * BPB + cappedHearts * LPB) / (LPB * BPB)
*/
uint256 cappedExtraDays = 0;

/* Must be more than 1 day for Longer-Pays-Better */
if (newStakedDays > 1) {
cappedExtraDays = newStakedDays <= LPB_MAX_DAYS ? newStakedDays - 1 : LPB_MAX_DAYS;
}

uint256 cappedStakedHearts = newStakedHearts <= BPB_MAX_HEARTS
? newStakedHearts
: BPB_MAX_HEARTS;

bonusHearts = cappedExtraDays * BPB + cappedStakedHearts * LPB;
bonusHearts = newStakedHearts * bonusHearts / (LPB * BPB);

return bonusHearts;
}

function _stakeUnlock(GlobalsCache memory g, StakeCache memory st)
private
pure
{
g._stakeSharesTotal -= st._stakeShares;
st._unlockedDay = g._currentDay;
}

function _stakePerformance(GlobalsCache memory g, StakeCache memory st, uint256 servedDays)
private
view
returns (uint256 stakeReturn, uint256 payout, uint256 penalty, uint256 cappedPenalty)
{
if (servedDays < st._stakedDays) {
(payout, penalty) = _calcPayoutAndEarlyPenalty(
g,
st._lockedDay,
st._stakedDays,
servedDays,
st._stakeShares
);
stakeReturn = st._stakedHearts + payout;
} else {
// servedDays must == stakedDays here
payout = _calcPayoutRewards(
g,
st._stakeShares,
st._lockedDay,
st._lockedDay + servedDays
);
stakeReturn = st._stakedHearts + payout;

penalty = _calcLatePenalty(st._lockedDay, st._stakedDays, st._unlockedDay, stakeReturn);
}
if (penalty != 0) {
if (penalty > stakeReturn) {
/* Cannot have a negative stake return */
cappedPenalty = stakeReturn;
stakeReturn = 0;
} else {
/* Remove penalty from the stake return */
cappedPenalty = penalty;
stakeReturn -= cappedPenalty;
}
}
return (stakeReturn, payout, penalty, cappedPenalty);
}

function _calcPayoutAndEarlyPenalty(
GlobalsCache memory g,
uint256 lockedDayParam,
uint256 stakedDaysParam,
uint256 servedDays,
uint256 stakeSharesParam
)
private
view
returns (uint256 payout, uint256 penalty)
{
uint256 servedEndDay = lockedDayParam + servedDays;

/* 50% of stakedDays (rounded up) with a minimum applied */
uint256 penaltyDays = (stakedDaysParam + 1) / 2;
if (penaltyDays < EARLY_PENALTY_MIN_DAYS) {
penaltyDays = EARLY_PENALTY_MIN_DAYS;
}

if (servedDays == 0) {
/* Fill penalty days with the estimated average payout */
uint256 expected = _estimatePayoutRewardsDay(g, stakeSharesParam, lockedDayParam);
penalty = expected * penaltyDays;
return (payout, penalty); // Actual payout was 0
}

if (penaltyDays < servedDays) {
/*
Simplified explanation of intervals where end-day is non-inclusive:

penalty: [lockedDay ... penaltyEndDay)
delta: [penaltyEndDay ... servedEndDay)
payout: [lockedDay ....................... servedEndDay)
*/
uint256 penaltyEndDay = lockedDayParam + penaltyDays;
penalty = _calcPayoutRewards(g, stakeSharesParam, lockedDayParam, penaltyEndDay);

uint256 delta = _calcPayoutRewards(g, stakeSharesParam, penaltyEndDay, servedEndDay);
payout = penalty + delta;
return (payout, penalty);
}

/* penaltyDays >= servedDays */
payout = _calcPayoutRewards(g, stakeSharesParam, lockedDayParam, servedEndDay);

if (penaltyDays == servedDays) {
penalty = payout;
} else {
/*
(penaltyDays > servedDays) means not enough days served, so fill the
penalty days with the average payout from only the days that were served.
*/
penalty = payout * penaltyDays / servedDays;
}
return (payout, penalty);
}

function _calcLatePenalty(
uint256 lockedDayParam,
uint256 stakedDaysParam,
uint256 unlockedDayParam,
uint256 rawStakeReturn
)
private
pure
returns (uint256)
{
/* Allow grace time before penalties accrue */
uint256 maxUnlockedDay = lockedDayParam + stakedDaysParam + LATE_PENALTY_GRACE_DAYS;
if (unlockedDayParam <= maxUnlockedDay) {
return 0;
}

/* Calculate penalty as a percentage of stake return based on time */
return rawStakeReturn * (unlockedDayParam - maxUnlockedDay) / LATE_PENALTY_SCALE_DAYS;
}

function _splitPenaltyProceeds(GlobalsCache memory g, uint256 penalty)
private
{
/* Split a penalty 50:50 between Origin and stakePenaltyTotal */
uint256 splitPenalty = penalty / 2;

if (splitPenalty != 0) {
_mint(ORIGIN_ADDR, splitPenalty);
}

/* Use the other half of the penalty to account for an odd-numbered penalty */
splitPenalty = penalty - splitPenalty;
g._stakePenaltyTotal += splitPenalty;
}

function _shareRateUpdate(GlobalsCache memory g, StakeCache memory st, uint256 stakeReturn)
private
{
if (stakeReturn > st._stakedHearts) {
/*
Calculate the new shareRate that would yield the same number of shares if
the user re-staked this stakeReturn, factoring in any bonuses they would
receive in stakeStart().
*/
uint256 bonusHearts = _stakeStartBonusHearts(stakeReturn, st._stakedDays);
uint256 newShareRate = (stakeReturn + bonusHearts) * SHARE_RATE_SCALE / st._stakeShares;

if (newShareRate > SHARE_RATE_MAX) {
/*
Realistically this can't happen, but there are contrived theoretical
scenarios that can lead to extreme values of newShareRate, so it is
capped to prevent them anyway.
*/
newShareRate = SHARE_RATE_MAX;
}

if (newShareRate > g._shareRate) {
g._shareRate = newShareRate;

_emitShareRateChange(newShareRate, st._stakeId);
}
}
}

function _emitStakeStart(
uint40 stakeId,
uint256 stakedHearts,
uint256 stakeShares,
uint256 stakedDays,
bool isAutoStake
)
private
{
emit StakeStart( // (auto-generated event)
uint256(uint40(block.timestamp))
| (uint256(uint72(stakedHearts)) << 40)
| (uint256(uint72(stakeShares)) << 112)
| (uint256(uint16(stakedDays)) << 184)
| (isAutoStake ? (1 << 200) : 0),
msg.sender,
stakeId
);
}

function _emitStakeGoodAccounting(
address stakerAddr,
uint40 stakeId,
uint256 stakedHearts,
uint256 stakeShares,
uint256 payout,
uint256 penalty
)
private
{
emit StakeGoodAccounting( // (auto-generated event)
uint256(uint40(block.timestamp))
| (uint256(uint72(stakedHearts)) << 40)
| (uint256(uint72(stakeShares)) << 112)
| (uint256(uint72(payout)) << 184),
uint256(uint72(penalty)),
stakerAddr,
stakeId,
msg.sender
);
}

function _emitStakeEnd(
uint40 stakeId,
uint256 stakedHearts,
uint256 stakeShares,
uint256 payout,
uint256 penalty,
uint256 servedDays,
bool prevUnlocked
)
private
{
emit StakeEnd( // (auto-generated event)
uint256(uint40(block.timestamp))
| (uint256(uint72(stakedHearts)) << 40)
| (uint256(uint72(stakeShares)) << 112)
| (uint256(uint72(payout)) << 184),
uint256(uint72(penalty))
| (uint256(uint16(servedDays)) << 72)
| (prevUnlocked ? (1 << 88) : 0),
msg.sender,
stakeId
);
}

function _emitShareRateChange(uint256 shareRate, uint40 stakeId)
private
{
emit ShareRateChange( // (auto-generated event)
uint256(uint40(block.timestamp))
| (uint256(uint40(shareRate)) << 40),
stakeId
);
}
}

/**
* @dev These functions deal with verification of Merkle trees (hash trees),
*/
library MerkleProof {
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
bytes32 computedHash = leaf;

for (uint256 i = 0; i < proof.length; i++) {
bytes32 proofElement = proof[i];

if (computedHash < proofElement) {
// Hash(current computed hash + current element of the proof)
computedHash = keccak256(abi.encodePacked(computedHash, proofElement));
} else {
// Hash(current element of the proof + current computed hash)
computedHash = keccak256(abi.encodePacked(proofElement, computedHash));
}
}

// Check if the computed hash (root) is equal to the provided root
return computedHash == root;
}
}

contract UTXOClaimValidation is StakeableToken {
/**
* @dev PUBLIC FACING: Verify a BTC address and balance are unclaimed and part of the Merkle tree
* @param btcAddr Bitcoin address (binary; no base58-check encoding)
* @param rawSatoshis Raw BTC address balance in Satoshis
* @param proof Merkle tree proof
* @return True if can be claimed
*/
function btcAddressIsClaimable(bytes20 btcAddr, uint256 rawSatoshis, bytes32[] calldata proof)
external
view
returns (bool)
{
uint256 day = _currentDay();

require(day >= CLAIM_PHASE_START_DAY, "HEX: Claim phase has not yet started");
require(day < CLAIM_PHASE_END_DAY, "HEX: Claim phase has ended");

/* Don't need to check Merkle proof if UTXO BTC address has already been claimed */
if (btcAddressClaims[btcAddr]) {
return false;
}

/* Verify the Merkle tree proof */
return _btcAddressIsValid(btcAddr, rawSatoshis, proof);
}

/**
* @dev PUBLIC FACING: Verify a BTC address and balance are part of the Merkle tree
* @param btcAddr Bitcoin address (binary; no base58-check encoding)
* @param rawSatoshis Raw BTC address balance in Satoshis
* @param proof Merkle tree proof
* @return True if valid
*/
function btcAddressIsValid(bytes20 btcAddr, uint256 rawSatoshis, bytes32[] calldata proof)
external
pure
returns (bool)
{
return _btcAddressIsValid(btcAddr, rawSatoshis, proof);
}

/**
* @dev PUBLIC FACING: Verify a Merkle proof using the UTXO Merkle tree
* @param merkleLeaf Leaf asserted to be present in the Merkle tree
* @param proof Generated Merkle tree proof
* @return True if valid
*/
function merkleProofIsValid(bytes32 merkleLeaf, bytes32[] calldata proof)
external
pure
returns (bool)
{
return _merkleProofIsValid(merkleLeaf, proof);
}

/**
* @dev PUBLIC FACING: Verify that a Bitcoin signature matches the claim message containing
* the Ethereum address and claim param hash
* @param claimToAddr Eth address within the signed claim message
* @param claimParamHash Param hash within the signed claim message
* @param pubKeyX First half of uncompressed ECDSA public key
* @param pubKeyY Second half of uncompressed ECDSA public key
* @param claimFlags Claim flags specifying address and message formats
* @param v v parameter of ECDSA signature
* @param r r parameter of ECDSA signature
* @param s s parameter of ECDSA signature
* @return True if matching
*/
function claimMessageMatchesSignature(
address claimToAddr,
bytes32 claimParamHash,
bytes32 pubKeyX,
bytes32 pubKeyY,
uint8 claimFlags,
uint8 v,
bytes32 r,
bytes32 s
)
public
pure
returns (bool)
{
require(v >= 27 && v <= 30, "HEX: v invalid");

/*
ecrecover() returns an Eth address rather than a public key, so
we must do the same to compare.
*/
address pubKeyEthAddr = pubKeyToEthAddress(pubKeyX, pubKeyY);

/* Create and hash the claim message text */
bytes32 messageHash = _hash256(
_claimMessageCreate(claimToAddr, claimParamHash, claimFlags)
);

/* Verify the public key */
return ecrecover(messageHash, v, r, s) == pubKeyEthAddr;
}

/**
* @dev PUBLIC FACING: Derive an Ethereum address from an ECDSA public key
* @param pubKeyX First half of uncompressed ECDSA public key
* @param pubKeyY Second half of uncompressed ECDSA public key
* @return Derived Eth address
*/
function pubKeyToEthAddress(bytes32 pubKeyX, bytes32 pubKeyY)
public
pure
returns (address)
{
return address(uint160(uint256(keccak256(abi.encodePacked(pubKeyX, pubKeyY)))));
}

/**
* @dev PUBLIC FACING: Derive a Bitcoin address from an ECDSA public key
* @param pubKeyX First half of uncompressed ECDSA public key
* @param pubKeyY Second half of uncompressed ECDSA public key
* @param claimFlags Claim flags specifying address and message formats
* @return Derived Bitcoin address (binary; no base58-check encoding)
*/
function pubKeyToBtcAddress(bytes32 pubKeyX, bytes32 pubKeyY, uint8 claimFlags)
public
pure
returns (bytes20)
{
/*
Helpful references:
- https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses
- https://github.com/cryptocoinjs/ecurve/blob/master/lib/point.js
*/
uint8 startingByte;
bytes memory pubKey;
bool compressed = (claimFlags & CLAIM_FLAG_BTC_ADDR_COMPRESSED) != 0;
bool nested = (claimFlags & CLAIM_FLAG_BTC_ADDR_P2WPKH_IN_P2SH) != 0;
bool bech32 = (claimFlags & CLAIM_FLAG_BTC_ADDR_BECH32) != 0;

if (compressed) {
/* Compressed public key format */
require(!(nested && bech32), "HEX: claimFlags invalid");

startingByte = (pubKeyY[31] & 0x01) == 0 ? 0x02 : 0x03;
pubKey = abi.encodePacked(startingByte, pubKeyX);
} else {
/* Uncompressed public key format */
require(!nested && !bech32, "HEX: claimFlags invalid");

startingByte = 0x04;
pubKey = abi.encodePacked(startingByte, pubKeyX, pubKeyY);
}

bytes20 pubKeyHash = _hash160(pubKey);
if (nested) {
return _hash160(abi.encodePacked(hex"0014", pubKeyHash));
}
return pubKeyHash;
}

/**
* @dev Verify a BTC address and balance are part of the Merkle tree
* @param btcAddr Bitcoin address (binary; no base58-check encoding)
* @param rawSatoshis Raw BTC address balance in Satoshis
* @param proof Merkle tree proof
* @return True if valid
*/
function _btcAddressIsValid(bytes20 btcAddr, uint256 rawSatoshis, bytes32[] memory proof)
internal
pure
returns (bool)
{
/*
Ensure the proof does not attempt to treat a Merkle leaf as if it were an
internal Merkle tree node. A leaf will always have the zero-fill. An
internal node will never have the zero-fill, as guaranteed by HEX's Merkle
tree construction.

The first element, proof[0], will always be a leaf because it is the pair
of the leaf being validated. The rest of the elements, proof[1..length-1],
must be internal nodes.

The number of leaves (CLAIMABLE_BTC_ADDR_COUNT) is even, as guaranteed by
HEX's Merkle tree construction, which eliminates the only edge-case where
this validation would not apply.
*/
require((uint256(proof[0]) & MERKLE_LEAF_FILL_MASK) == 0, "HEX: proof invalid");
for (uint256 i = 1; i < proof.length; i++) {
require((uint256(proof[i]) & MERKLE_LEAF_FILL_MASK) != 0, "HEX: proof invalid");
}

/*
Calculate the 32 byte Merkle leaf associated with this BTC address and balance
160 bits: BTC address
52 bits: Zero-fill
45 bits: Satoshis (limited by MAX_BTC_ADDR_BALANCE_SATOSHIS)
*/
bytes32 merkleLeaf = bytes32(btcAddr) | bytes32(rawSatoshis);

/* Verify the Merkle tree proof */
return _merkleProofIsValid(merkleLeaf, proof);
}

/**
* @dev Verify a Merkle proof using the UTXO Merkle tree
* @param merkleLeaf Leaf asserted to be present in the Merkle tree
* @param proof Generated Merkle tree proof
* @return True if valid
*/
function _merkleProofIsValid(bytes32 merkleLeaf, bytes32[] memory proof)
private
pure
returns (bool)
{
return MerkleProof.verify(proof, MERKLE_TREE_ROOT, merkleLeaf);
}

function _claimMessageCreate(address claimToAddr, bytes32 claimParamHash, uint8 claimFlags)
private
pure
returns (bytes memory)
{
bytes memory prefixStr = (claimFlags & CLAIM_FLAG_MSG_PREFIX_OLD) != 0
? OLD_CLAIM_PREFIX_STR
: STD_CLAIM_PREFIX_STR;

bool includeAddrChecksum = (claimFlags & CLAIM_FLAG_ETH_ADDR_LOWERCASE) == 0;

bytes memory addrStr = _addressStringCreate(claimToAddr, includeAddrChecksum);

if (claimParamHash == 0) {
return abi.encodePacked(
BITCOIN_SIG_PREFIX_LEN,
BITCOIN_SIG_PREFIX_STR,
uint8(prefixStr.length) + ETH_ADDRESS_HEX_LEN,
prefixStr,
addrStr
);
}

bytes memory claimParamHashStr = new bytes(CLAIM_PARAM_HASH_HEX_LEN);

_hexStringFromData(claimParamHashStr, claimParamHash, CLAIM_PARAM_HASH_BYTE_LEN);

return abi.encodePacked(
BITCOIN_SIG_PREFIX_LEN,
BITCOIN_SIG_PREFIX_STR,
uint8(prefixStr.length) + ETH_ADDRESS_HEX_LEN + 1 + CLAIM_PARAM_HASH_HEX_LEN,
prefixStr,
addrStr,
"_",
claimParamHashStr
);
}

function _addressStringCreate(address addr, bool includeAddrChecksum)
private
pure
returns (bytes memory addrStr)
{
addrStr = new bytes(ETH_ADDRESS_HEX_LEN);
_hexStringFromData(addrStr, bytes32(bytes20(addr)), ETH_ADDRESS_BYTE_LEN);

if (includeAddrChecksum) {
bytes32 addrStrHash = keccak256(addrStr);

uint256 offset = 0;

for (uint256 i = 0; i < ETH_ADDRESS_BYTE_LEN; i++) {
uint8 b = uint8(addrStrHash[i]);

_addressStringChecksumChar(addrStr, offset++, b >> 4);
_addressStringChecksumChar(addrStr, offset++, b & 0x0f);
}
}

return addrStr;
}

function _addressStringChecksumChar(bytes memory addrStr, uint256 offset, uint8 hashNybble)
private
pure
{
bytes1 ch = addrStr[offset];

if (ch >= "a" && hashNybble >= 8) {
addrStr[offset] = ch ^ 0x20;
}
}

function _hexStringFromData(bytes memory hexStr, bytes32 data, uint256 dataLen)
private
pure
{
uint256 offset = 0;

for (uint256 i = 0; i < dataLen; i++) {
uint8 b = uint8(data[i]);

hexStr[offset++] = HEX_DIGITS[b >> 4];
hexStr[offset++] = HEX_DIGITS[b & 0x0f];
}
}

/**
* @dev sha256(sha256(data))
* @param data Data to be hashed
* @return 32-byte hash
*/
function _hash256(bytes memory data)
private
pure
returns (bytes32)
{
return sha256(abi.encodePacked(sha256(data)));
}

/**
* @dev ripemd160(sha256(data))
* @param data Data to be hashed
* @return 20-byte hash
*/
function _hash160(bytes memory data)
private
pure
returns (bytes20)
{
return ripemd160(abi.encodePacked(sha256(data)));
}
}

contract UTXORedeemableToken is UTXOClaimValidation {
/**
* @dev PUBLIC FACING: Claim a BTC address and its Satoshi balance in Hearts
* crediting the appropriate amount to a specified Eth address. Bitcoin ECDSA
* signature must be from that BTC address and must match the claim message
* for the Eth address.
* @param rawSatoshis Raw BTC address balance in Satoshis
* @param proof Merkle tree proof
* @param claimToAddr Destination Eth address to credit Hearts to
* @param pubKeyX First half of uncompressed ECDSA public key for the BTC address
* @param pubKeyY Second half of uncompressed ECDSA public key for the BTC address
* @param claimFlags Claim flags specifying address and message formats
* @param v v parameter of ECDSA signature
* @param r r parameter of ECDSA signature
* @param s s parameter of ECDSA signature
* @param autoStakeDays Number of days to auto-stake, subject to minimum auto-stake days
* @param referrerAddr Eth address of referring user (optional; 0x0 for no referrer)
* @return Total number of Hearts credited, if successful
*/
function btcAddressClaim(
uint256 rawSatoshis,
bytes32[] calldata proof,
address claimToAddr,
bytes32 pubKeyX,
bytes32 pubKeyY,
uint8 claimFlags,
uint8 v,
bytes32 r,
bytes32 s,
uint256 autoStakeDays,
address referrerAddr
)
external
returns (uint256)
{
/* Sanity check */
require(rawSatoshis <= MAX_BTC_ADDR_BALANCE_SATOSHIS, "HEX: CHK: rawSatoshis");

/* Enforce the minimum stake time for the auto-stake from this claim */
require(autoStakeDays >= MIN_AUTO_STAKE_DAYS, "HEX: autoStakeDays lower than minimum");

/* Ensure signature matches the claim message containing the Eth address and claimParamHash */
{
bytes32 claimParamHash = 0;

if (claimToAddr != msg.sender) {
/* Claimer did not send this, so claim params must be signed */
claimParamHash = keccak256(
abi.encodePacked(MERKLE_TREE_ROOT, autoStakeDays, referrerAddr)
);
}

require(
claimMessageMatchesSignature(
claimToAddr,
claimParamHash,
pubKeyX,
pubKeyY,
claimFlags,
v,
r,
s
),
"HEX: Signature mismatch"
);
}

/* Derive BTC address from public key */
bytes20 btcAddr = pubKeyToBtcAddress(pubKeyX, pubKeyY, claimFlags);

/* Ensure BTC address has not yet been claimed */
require(!btcAddressClaims[btcAddr], "HEX: BTC address balance already claimed");

/* Ensure BTC address is part of the Merkle tree */
require(
_btcAddressIsValid(btcAddr, rawSatoshis, proof),
"HEX: BTC address or balance unknown"
);

/* Mark BTC address as claimed */
btcAddressClaims[btcAddr] = true;

return _satoshisClaimSync(
rawSatoshis,
claimToAddr,
btcAddr,
claimFlags,
autoStakeDays,
referrerAddr
);
}

function _satoshisClaimSync(
uint256 rawSatoshis,
address claimToAddr,
bytes20 btcAddr,
uint8 claimFlags,
uint256 autoStakeDays,
address referrerAddr
)
private
returns (uint256 totalClaimedHearts)
{
GlobalsCache memory g;
GlobalsCache memory gSnapshot;
_globalsLoad(g, gSnapshot);

totalClaimedHearts = _satoshisClaim(
g,
rawSatoshis,
claimToAddr,
btcAddr,
claimFlags,
autoStakeDays,
referrerAddr
);

_globalsSync(g, gSnapshot);

return totalClaimedHearts;
}

/**
* @dev Credit an Eth address with the Hearts value of a raw Satoshis balance
* @param g Cache of stored globals
* @param rawSatoshis Raw BTC address balance in Satoshis
* @param claimToAddr Destination Eth address for the claimed Hearts to be sent
* @param btcAddr Bitcoin address (binary; no base58-check encoding)
* @param autoStakeDays Number of days to auto-stake, subject to minimum auto-stake days
* @param referrerAddr Eth address of referring user (optional; 0x0 for no referrer)
* @return Total number of Hearts credited, if successful
*/
function _satoshisClaim(
GlobalsCache memory g,
uint256 rawSatoshis,
address claimToAddr,
bytes20 btcAddr,
uint8 claimFlags,
uint256 autoStakeDays,
address referrerAddr
)
private
returns (uint256 totalClaimedHearts)
{
/* Allowed only during the claim phase */
require(g._currentDay >= CLAIM_PHASE_START_DAY, "HEX: Claim phase has not yet started");
require(g._currentDay < CLAIM_PHASE_END_DAY, "HEX: Claim phase has ended");

/* Check if log data needs to be updated */
_dailyDataUpdateAuto(g);

/* Sanity check */
require(
g._claimedBtcAddrCount < CLAIMABLE_BTC_ADDR_COUNT,
"HEX: CHK: _claimedBtcAddrCount"
);

(uint256 adjSatoshis, uint256 claimedHearts, uint256 claimBonusHearts) = _calcClaimValues(
g,
rawSatoshis
);

/* Increment claim count to track viral rewards */
g._claimedBtcAddrCount++;

totalClaimedHearts = _remitBonuses(
claimToAddr,
btcAddr,
claimFlags,
rawSatoshis,
adjSatoshis,
claimedHearts,
claimBonusHearts,
referrerAddr
);

/* Auto-stake a percentage of the successful claim */
uint256 autoStakeHearts = totalClaimedHearts * AUTO_STAKE_CLAIM_PERCENT / 100;
_stakeStart(g, autoStakeHearts, autoStakeDays, true);

/* Mint remaining claimed Hearts to claim address */
_mint(claimToAddr, totalClaimedHearts - autoStakeHearts);

return totalClaimedHearts;
}

function _remitBonuses(
address claimToAddr,
bytes20 btcAddr,
uint8 claimFlags,
uint256 rawSatoshis,
uint256 adjSatoshis,
uint256 claimedHearts,
uint256 claimBonusHearts,
address referrerAddr
)
private
returns (uint256 totalClaimedHearts)
{
totalClaimedHearts = claimedHearts + claimBonusHearts;

uint256 originBonusHearts = claimBonusHearts;

if (referrerAddr == address(0)) {
/* No referrer */
_emitClaim(
claimToAddr,
btcAddr,
claimFlags,
rawSatoshis,
adjSatoshis,
totalClaimedHearts,
referrerAddr
);
} else {
/* Referral bonus of 10% of total claimed Hearts to claimer */
uint256 referralBonusHearts = totalClaimedHearts / 10;

totalClaimedHearts += referralBonusHearts;

/* Then a cumulative referrer bonus of 20% to referrer */
uint256 referrerBonusHearts = totalClaimedHearts / 5;

originBonusHearts += referralBonusHearts + referrerBonusHearts;

if (referrerAddr == claimToAddr) {
/* Self-referred */
totalClaimedHearts += referrerBonusHearts;
_emitClaim(
claimToAddr,
btcAddr,
claimFlags,
rawSatoshis,
adjSatoshis,
totalClaimedHearts,
referrerAddr
);
} else {
/* Referred by different address */
_emitClaim(
claimToAddr,
btcAddr,
claimFlags,
rawSatoshis,
adjSatoshis,
totalClaimedHearts,
referrerAddr
);
_mint(referrerAddr, referrerBonusHearts);
}
}

_mint(ORIGIN_ADDR, originBonusHearts);

return totalClaimedHearts;
}

function _emitClaim(
address claimToAddr,
bytes20 btcAddr,
uint8 claimFlags,
uint256 rawSatoshis,
uint256 adjSatoshis,
uint256 claimedHearts,
address referrerAddr
)
private
{
emit Claim( // (auto-generated event)
uint256(uint40(block.timestamp))
| (uint256(uint56(rawSatoshis)) << 40)
| (uint256(uint56(adjSatoshis)) << 96)
| (uint256(claimFlags) << 152)
| (uint256(uint72(claimedHearts)) << 160),
uint256(uint160(msg.sender)),
btcAddr,
claimToAddr,
referrerAddr
);

if (claimToAddr == msg.sender) {
return;
}

emit ClaimAssist( // (auto-generated event)
uint256(uint40(block.timestamp))
| (uint256(uint160(btcAddr)) << 40)
| (uint256(uint56(rawSatoshis)) << 200),
uint256(uint56(adjSatoshis))
| (uint256(uint160(claimToAddr)) << 56)
| (uint256(claimFlags) << 216),
uint256(uint72(claimedHearts))
| (uint256(uint160(referrerAddr)) << 72),
msg.sender
);
}

function _calcClaimValues(GlobalsCache memory g, uint256 rawSatoshis)
private
pure
returns (uint256 adjSatoshis, uint256 claimedHearts, uint256 claimBonusHearts)
{
/* Apply Silly Whale reduction */
adjSatoshis = _adjustSillyWhale(rawSatoshis);
require(
g._claimedSatoshisTotal + adjSatoshis <= CLAIMABLE_SATOSHIS_TOTAL,
"HEX: CHK: _claimedSatoshisTotal"
);
g._claimedSatoshisTotal += adjSatoshis;

uint256 daysRemaining = CLAIM_PHASE_END_DAY - g._currentDay;

/* Apply late-claim reduction */
adjSatoshis = _adjustLateClaim(adjSatoshis, daysRemaining);
g._unclaimedSatoshisTotal -= adjSatoshis;

/* Convert to Hearts and calculate speed bonus */
claimedHearts = adjSatoshis * HEARTS_PER_SATOSHI;
claimBonusHearts = _calcSpeedBonus(claimedHearts, daysRemaining);

return (adjSatoshis, claimedHearts, claimBonusHearts);
}

/**
* @dev Apply Silly Whale adjustment
* @param rawSatoshis Raw BTC address balance in Satoshis
* @return Adjusted BTC address balance in Satoshis
*/
function _adjustSillyWhale(uint256 rawSatoshis)
private
pure
returns (uint256)
{
if (rawSatoshis < 1000e8) {
/* For < 1,000 BTC: no penalty */
return rawSatoshis;
}
if (rawSatoshis >= 10000e8) {
/* For >= 10,000 BTC: penalty is 75%, leaving 25% */
return rawSatoshis / 4;
}
/*
For 1,000 <= BTC < 10,000: penalty scales linearly from 50% to 75%

penaltyPercent = (btc - 1000) / (10000 - 1000) * (75 - 50) + 50
= (btc - 1000) / 9000 * 25 + 50
= (btc - 1000) / 360 + 50

appliedPercent = 100 - penaltyPercent
= 100 - ((btc - 1000) / 360 + 50)
= 100 - (btc - 1000) / 360 - 50
= 50 - (btc - 1000) / 360
= (18000 - (btc - 1000)) / 360
= (18000 - btc + 1000) / 360
= (19000 - btc) / 360

adjustedBtc = btc * appliedPercent / 100
= btc * ((19000 - btc) / 360) / 100
= btc * (19000 - btc) / 36000

adjustedSat = 1e8 * adjustedBtc
= 1e8 * (btc * (19000 - btc) / 36000)
= 1e8 * ((sat / 1e8) * (19000 - (sat / 1e8)) / 36000)
= 1e8 * (sat / 1e8) * (19000 - (sat / 1e8)) / 36000
= (sat / 1e8) * 1e8 * (19000 - (sat / 1e8)) / 36000
= (sat / 1e8) * (19000e8 - sat) / 36000
= sat * (19000e8 - sat) / 36000e8
*/
return rawSatoshis * (19000e8 - rawSatoshis) / 36000e8;
}

/**
* @dev Apply late-claim adjustment to scale claim to zero by end of claim phase
* @param adjSatoshis Adjusted BTC address balance in Satoshis (after Silly Whale)
* @param daysRemaining Number of reward days remaining in claim phase
* @return Adjusted BTC address balance in Satoshis (after Silly Whale and Late-Claim)
*/
function _adjustLateClaim(uint256 adjSatoshis, uint256 daysRemaining)
private
pure
returns (uint256)
{
/*
Only valid from CLAIM_PHASE_DAYS to 1, and only used during that time.

adjustedSat = sat * (daysRemaining / CLAIM_PHASE_DAYS) * 100%
= sat * daysRemaining / CLAIM_PHASE_DAYS
*/
return adjSatoshis * daysRemaining / CLAIM_PHASE_DAYS;
}

/**
* @dev Calculates speed bonus for claiming earlier in the claim phase
* @param claimedHearts Hearts claimed from adjusted BTC address balance Satoshis
* @param daysRemaining Number of claim days remaining in claim phase
* @return Speed bonus in Hearts
*/
function _calcSpeedBonus(uint256 claimedHearts, uint256 daysRemaining)
private
pure
returns (uint256)
{
/*
Only valid from CLAIM_PHASE_DAYS to 1, and only used during that time.
Speed bonus is 20% ... 0% inclusive.

bonusHearts = claimedHearts * ((daysRemaining - 1) / (CLAIM_PHASE_DAYS - 1)) * 20%
= claimedHearts * ((daysRemaining - 1) / (CLAIM_PHASE_DAYS - 1)) * 20/100
= claimedHearts * ((daysRemaining - 1) / (CLAIM_PHASE_DAYS - 1)) / 5
= claimedHearts * (daysRemaining - 1) / ((CLAIM_PHASE_DAYS - 1) * 5)
*/
return claimedHearts * (daysRemaining - 1) / ((CLAIM_PHASE_DAYS - 1) * 5);
}
}

contract TransformableToken is UTXORedeemableToken {
/**
* @dev PUBLIC FACING: Enter the tranform lobby for the current round
* @param referrerAddr Eth address of referring user (optional; 0x0 for no referrer)
*/
function xfLobbyEnter(address referrerAddr)
external
payable
{
uint256 enterDay = _currentDay();
require(enterDay < CLAIM_PHASE_END_DAY, "HEX: Lobbies have ended");

uint256 rawAmount = msg.value;
require(rawAmount != 0, "HEX: Amount required");

XfLobbyQueueStore storage qRef = xfLobbyMembers[enterDay][msg.sender];

uint256 entryIndex = qRef.tailIndex++;

qRef.entries[entryIndex] = XfLobbyEntryStore(uint96(rawAmount), referrerAddr);

xfLobby[enterDay] += rawAmount;

_emitXfLobbyEnter(enterDay, entryIndex, rawAmount, referrerAddr);
}

/**
* @dev PUBLIC FACING: Leave the transform lobby after the round is complete
* @param enterDay Day number when the member entered
* @param count Number of queued-enters to exit (optional; 0 for all)
*/
function xfLobbyExit(uint256 enterDay, uint256 count)
external
{
require(enterDay < _currentDay(), "HEX: Round is not complete");

XfLobbyQueueStore storage qRef = xfLobbyMembers[enterDay][msg.sender];

uint256 headIndex = qRef.headIndex;
uint256 endIndex;

if (count != 0) {
require(count <= qRef.tailIndex - headIndex, "HEX: count invalid");
endIndex = headIndex + count;
} else {
endIndex = qRef.tailIndex;
require(headIndex < endIndex, "HEX: count invalid");
}

uint256 waasLobby = _waasLobby(enterDay);
uint256 _xfLobby = xfLobby[enterDay];
uint256 totalXfAmount = 0;
uint256 originBonusHearts = 0;

do {
uint256 rawAmount = qRef.entries[headIndex].rawAmount;
address referrerAddr = qRef.entries[headIndex].referrerAddr;

delete qRef.entries[headIndex];

uint256 xfAmount = waasLobby * rawAmount / _xfLobby;

if (referrerAddr == address(0)) {
/* No referrer */
_emitXfLobbyExit(enterDay, headIndex, xfAmount, referrerAddr);
} else {
/* Referral bonus of 10% of xfAmount to member */
uint256 referralBonusHearts = xfAmount / 10;

xfAmount += referralBonusHearts;

/* Then a cumulative referrer bonus of 20% to referrer */
uint256 referrerBonusHearts = xfAmount / 5;

if (referrerAddr == msg.sender) {
/* Self-referred */
xfAmount += referrerBonusHearts;
_emitXfLobbyExit(enterDay, headIndex, xfAmount, referrerAddr);
} else {
/* Referred by different address */
_emitXfLobbyExit(enterDay, headIndex, xfAmount, referrerAddr);
_mint(referrerAddr, referrerBonusHearts);
}
originBonusHearts += referralBonusHearts + referrerBonusHearts;
}

totalXfAmount += xfAmount;
} while (++headIndex < endIndex);

qRef.headIndex = uint40(headIndex);

if (originBonusHearts != 0) {
_mint(ORIGIN_ADDR, originBonusHearts);
}
if (totalXfAmount != 0) {
_mint(msg.sender, totalXfAmount);
}
}

/**
* @dev PUBLIC FACING: Release any value that has been sent to the contract
*/
function xfLobbyFlush()
external
{
require(address(this).balance != 0, "HEX: No value");

FLUSH_ADDR.transfer(address(this).balance);
}

/**
* @dev PUBLIC FACING: External helper to return multiple values of xfLobby[] with
* a single call
* @param beginDay First day of data range
* @param endDay Last day (non-inclusive) of data range
* @return Fixed array of values
*/
function xfLobbyRange(uint256 beginDay, uint256 endDay)
external
view
returns (uint256[] memory list)
{
require(
beginDay < endDay && endDay <= CLAIM_PHASE_END_DAY && endDay <= _currentDay(),
"HEX: invalid range"
);

list = new uint256[](endDay - beginDay);

uint256 src = beginDay;
uint256 dst = 0;
do {
list[dst++] = uint256(xfLobby[src++]);
} while (src < endDay);

return list;
}

/**
* @dev PUBLIC FACING: Return a current lobby member queue entry.
* Only needed due to limitations of the standard ABI encoder.
* @param memberAddr Eth address of the lobby member
* @param entryId 49 bit compound value. Top 9 bits: enterDay, Bottom 40 bits: entryIndex
* @return 1: Raw amount that was entered with; 2: Referring Eth addr (optional; 0x0 for no referrer)
*/
function xfLobbyEntry(address memberAddr, uint256 entryId)
external
view
returns (uint256 rawAmount, address referrerAddr)
{
uint256 enterDay = entryId >> XF_LOBBY_ENTRY_INDEX_SIZE;
uint256 entryIndex = entryId & XF_LOBBY_ENTRY_INDEX_MASK;

XfLobbyEntryStore storage entry = xfLobbyMembers[enterDay][memberAddr].entries[entryIndex];

require(entry.rawAmount != 0, "HEX: Param invalid");

return (entry.rawAmount, entry.referrerAddr);
}

/**
* @dev PUBLIC FACING: Return the lobby days that a user is in with a single call
* @param memberAddr Eth address of the user
* @return Bit vector of lobby day numbers
*/
function xfLobbyPendingDays(address memberAddr)
external
view
returns (uint256[XF_LOBBY_DAY_WORDS] memory words)
{
uint256 day = _currentDay() + 1;

if (day > CLAIM_PHASE_END_DAY) {
day = CLAIM_PHASE_END_DAY;
}

while (day-- != 0) {
if (xfLobbyMembers[day][memberAddr].tailIndex > xfLobbyMembers[day][memberAddr].headIndex) {
words[day >> 8] |= 1 << (day & 255);
}
}

return words;
}

function _waasLobby(uint256 enterDay)
private
returns (uint256 waasLobby)
{
if (enterDay >= CLAIM_PHASE_START_DAY) {
GlobalsCache memory g;
GlobalsCache memory gSnapshot;
_globalsLoad(g, gSnapshot);

_dailyDataUpdateAuto(g);

uint256 unclaimed = dailyData[enterDay].dayUnclaimedSatoshisTotal;
waasLobby = unclaimed * HEARTS_PER_SATOSHI / CLAIM_PHASE_DAYS;

_globalsSync(g, gSnapshot);
} else {
waasLobby = WAAS_LOBBY_SEED_HEARTS;
}
return waasLobby;
}

function _emitXfLobbyEnter(
uint256 enterDay,
uint256 entryIndex,
uint256 rawAmount,
address referrerAddr
)
private
{
emit XfLobbyEnter( // (auto-generated event)
uint256(uint40(block.timestamp))
| (uint256(uint96(rawAmount)) << 40),
msg.sender,
(enterDay << XF_LOBBY_ENTRY_INDEX_SIZE) | entryIndex,
referrerAddr
);
}

function _emitXfLobbyExit(
uint256 enterDay,
uint256 entryIndex,
uint256 xfAmount,
address referrerAddr
)
private
{
emit XfLobbyExit( // (auto-generated event)
uint256(uint40(block.timestamp))
| (uint256(uint72(xfAmount)) << 40),
msg.sender,
(enterDay << XF_LOBBY_ENTRY_INDEX_SIZE) | entryIndex,
referrerAddr
);
}
}

contract HEX is TransformableToken {
constructor()
public
{
/* Initialize global shareRate to 1 */
globals.shareRate = uint40(1 * SHARE_RATE_SCALE);

/* Initialize dailyDataCount to skip pre-claim period */
globals.dailyDataCount = uint16(PRE_CLAIM_DAYS);

/* Add all Satoshis from UTXO snapshot to contract */
globals.claimStats = _claimStatsEncode(
0, // _claimedBtcAddrCount
0, // _claimedSatoshisTotal
FULL_SATOSHIS_TOTAL // _unclaimedSatoshisTotal
);
}

function() external payable {}
}

 

 

https://etherscan.io/address/0x2b591e99afe9f32eaa6214f7b7629768c40eeb39#code